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Intro

These notes are written as a self-contained, graduate-level introduction to the mathematical
language of modern robotics kinematics.
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1 The Rigid Body and Kinematics

Definition 1.1 (Kinematics vs. Dynamics). Kinematics is the study of motion (position,
velocity, acceleration) without considering the forces or torques that cause it. Dynamics is the
study of motion with consideration of forces and torques (e.g., using Newton’s laws).

These notes, and much of the main notes, focus on kinematics.

The Rigid Body Assumption
A rigid body is an idealized collection of particles where the distance between any two
particles remains constant, regardless of any forces applied.
This is the fundamental assumption of these notes. While no real object is perfectly rigid
(materials deform), it is an excellent model for robot links, tools, and most solid objects in
mechanics.
Because the body is rigid, we don’t need to track every particle. We only need to describe
the overall pose of the body in space.
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2 Configuration: Describing the Pose

To describe the pose of a rigid body, we need two pieces of information: where it is (position)
and how it’s oriented (orientation).

2.1 Reference Frames

The most important concept is the reference frame. All positions and orientations are described
relative to a frame.

– Space Frame {s}: This is a fixed, inertial frame. You can think of it as the "world" or
the "room" the robot is in. We’ll denote vectors in this frame with a subscript s, like ps.

– Body Frame {b}: This frame is rigidly attached to the rigid body and moves with it.
We’ll denote vectors in this frame with a subscript b, like pb.

The pose of the rigid body is a complete description of the position and orientation of its body
frame {b} relative to the space frame {s}.

2.2 Position

Position is the easy part. We track the location of the origin of the body frame {b} relative to
the origin of the space frame {s}. This is just a vector p ∈ R3.

2.3 Orientation and SO(3)

Orientation describes how the body frame is "rotated." We can represent this by writing the
axes of the body frame {b} (call them x̂b, ŷb, ẑb) in the coordinates of the space frame {s}.
We collect these three vectors as the columns of a 3 × 3 matrix R:

R =
[
x̂b ŷb ẑb

]
This matrix R has special properties because the axes {x̂b, ŷb, ẑb} form an orthonormal basis:

1. Orthogonal: The columns are mutually orthogonal and have unit length. This means
R⊤R = I. (This also means R−1 = R⊤).

2. Right-handed: To preserve the "handedness" of the coordinate system (i.e., not flip it
into a mirror image), we require det(R) = +1.

Definition 2.1 (Special Orthogonal Group SO(3)). The set of all 3 × 3 matrices R such that
R⊤R = I and det(R) = 1 is called the Special Orthogonal Group, denoted SO(3).

This is the mathematical object for representing rotations, and it is a central topic in the main
notes (Section 6). A matrix R ∈ SO(3) can be used to "rotate" vectors. If vb is a vector in the
body frame, its representation in the space frame is vs = Rvb.

2.4 Pose and SE(3)

We now combine position p and orientation R to describe the full pose. Let’s find the coordinates
of a point q (which is fixed to the rigid body) in the space frame. If the point has coordinates qb

in the body frame {b}, its space-frame coordinates qs are:

qs = p + Rqb
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This is a rigid body transformation. It’s a linear rotation (Rqb) followed by a linear translation
(+p).

Homogeneous Transformation Matrices
The equation qs = p + Rqb is an affine transformation, not a purely linear one (due to the
+p). This is awkward for composition. We can make it linear by adding a "1" to our vectors
(called homogeneous coordinates):

q̄s =
[
qs

1

]
, q̄b =

[
qb

1

]

Now, we can write the transformation as a single 4 × 4 matrix multiplication:[
qs

1

]
=
[
R p
0 1

] [
qb

1

]

This 4 × 4 matrix H is called a homogeneous transformation matrix.

Definition 2.2 (Special Euclidean Group SE(3)). The set of all 4 × 4 matrices H of the form

H =
[
R p
0 1

]
, where R ∈ SO(3), p ∈ R3

is called the Special Euclidean Group, denoted SE(3).

This is the mathematical object for representing rigid body poses, and it is a central topic in the
main notes (Section 6).

Worked Example (2D Pose). Imagine a 2D body frame {b} rotated by 90◦ counter-
clockwise (about z) relative to {s}, with its origin at p = (5, 2, 0). The rotation matrix is

R =

0 −1 0
1 0 0
0 0 1

. The position is p =

5
2
0

. The SE(3) matrix is:

H =


0 −1 0 5
1 0 0 2
0 0 1 0
0 0 0 1


A point qb = (1, 0, 0) in the body frame is at what space-frame location?

[
qs

1

]
= H


1
0
0
1

 =


0(1) + (−1)(0) + 0(0) + 5(1)

1(1) + 0(0) + 0(0) + 2(1)
0(1) + 0(0) + 1(0) + 0(1)
0(1) + 0(0) + 0(0) + 1(1)

 =


5
3
0
1


So, qs = (5, 3, 0). This makes sense: the point is "one unit in the body’s x-direction," which
is the space-frame’s y-direction, starting from (5, 2).
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3 Velocity: Twists

Now we describe the motion of a rigid body. The pose H(t) is now a function of time. We want
to find its velocity.

3.1 Linear and Angular Velocity

The velocity of the body frame’s origin is simply the time derivative of its position:

vs(t) = ṗ(t)

The angular velocity is more complex. It’s the time derivative of the orientation, Ṙ(t). Let’s
analyze Ṙ. We know R(t)⊤R(t) = I. Taking the time derivative (using the product rule):

Ṙ⊤R + R⊤Ṙ = 0

Let ω̂b = R⊤Ṙ. The equation shows ω̂⊤
b = −ω̂b. This means ω̂b is a 3 × 3 skew-symmetric

matrix.

Definition 3.1 (Skew-Symmetric Matrices so(3)). A matrix A is skew-symmetric if A⊤ = −A.
The set of all 3 × 3 skew-symmetric matrices is denoted so(3). Any ω = (ω1, ω2, ω3) ∈ R3 can be
mapped to a matrix in so(3) via the hat map:

ω̂ = ω ∧ =

 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0


The vee map ( ∨) is the inverse: ω̂ ∨ = ω. A key property is that âb = a × b (the cross product).

The matrix ω̂b = R⊤Ṙ corresponds to a vector ωb, which we call the body angular velocity.
We can also define the spatial angular velocity ωs from the matrix ω̂s = ṘR⊤. (Note:
ω̂s = Rω̂bR

⊤, or ωs = Rωb.)

3.2 Twists and se(3)

We can now combine the linear velocity vs = ṗ and angular velocity ωs of the body.

Definition 3.2 (Twist). A spatial twist, denoted ξs, is a 6-dimensional vector that combines
the angular velocity ωs and the linear velocity vs of the body frame’s origin:

ξs =
[
ωs

vs

]
∈ R6

This ξs describes the complete, instantaneous velocity of the rigid body. This physical concept
maps directly to the Lie algebra se(3). Let’s take the derivative of the homogeneous matrix H:

Ḣ = d
dt

[
R p
0 1

]
=
[
Ṙ ṗ
0 0

]
We can factor this in the space frame:

Ḣ =
[
ṘR⊤R vs

0 0

]
=
[
ω̂sR vs

0 0

]
=
[
ω̂s vs

0 0

] [
R p
0 1

]

Let ξ̂s =
[
ω̂s vs

0 0

]
. Then we have the fundamental equation:

Ḣ = ξ̂sH
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Definition 3.3 (The Lie Algebra se(3)). The set of all 4 × 4 matrices ξ̂ of the form

ξ̂ =
[
ω̂ v
0 0

]
, where ω̂ ∈ so(3), v ∈ R3

is called the Lie algebra se(3). It is the set of all possible instantaneous velocities (twists) of a
rigid body.

This is the mathematical object for representing twists, and it is a central topic in the main notes
(Section 6 & 7).

Worked Example (Types of Twists).

– Pure Translation: The body slides without rotating. ωs = 0, vs = (1, 0, 0) (moving

along x-axis). ξs = (0, 0, 0, 1, 0, 0)⊤. ξ̂s =
[ 0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0

]
. This is a prismatic joint.

– Pure Rotation: The body rotates about the space z-axis (which passes through its

origin). ωs = (0, 0, 1), vs = (0, 0, 0). ξs = (0, 0, 1, 0, 0, 0)⊤. ξ̂s =
[ 0 −1 0 0

1 0 0 0
0 0 0 0
0 0 0 0

]
. This is a

revolute joint.

The main notes (Section 7.1, 8.1) build on this to show that any rigid motion (a "screw") is
just a linear combination of these basic twists.
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4 Forces: Wrenches

Kinematics describes motion; dynamics relates motion to forces and torques (also called
moments).

4.1 Force and Torque

A force f ∈ R3 is a "push" or "pull" applied to the body. A torque (or moment) m ∈ R3 is a
"twist" or "rotation" applied to the body. If a force f is applied at a point q, it creates a torque
mo about a reference point o (like the origin) given by the cross product:

mo = (q − o) × f

Just as we can combine all instantaneous velocities into a single ξ, we can combine all forces
and torques acting on a body into a single object.

Definition 4.1 (Wrench). A wrench, denoted F , is a 6-dimensional vector that combines the
total torque m and total force f acting on a body, referenced to a specific frame (e.g., the space
frame).

Fs =
[
ms

fs

]
∈ R6

4.2 Duality: Power and the Reciprocal Product

Twists and wrenches are "dual" to each other. Their relationship is power.

– The power Plin generated by a force f moving at velocity v is Plin = f⊤v.

– The power Pang generated by a torque m rotating at angular velocity ω is Pang = m⊤ω.

The total instantaneous power P generated by a wrench F on a body moving with twist ξ is
the sum of these two:

P = m⊤
s ωs + f⊤

s vs

The Reciprocal Product
This power calculation P = m⊤ω + f⊤v is a key operation. It is the dot product of the 6D
wrench and twist vectors.

P = F ◦ ξ =
[
m
f

]
·
[
ω
v

]
This is called the reciprocal product in the main notes (Section 7.2).
If F ◦ ξ = 0, the wrench generates no power on the twist. This means the force/torque
is "reciprocal" (or orthogonal) to the motion. This concept is critical for understanding
constraints in parallel robots (Section 9).
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5 Connection to Robot Mechanisms

These concepts are the building blocks for robotics:

1. A robot is a chain of rigid bodies (links).

2. Links are connected by joints, which constrain the relative motion.

3. A joint’s allowed motion is described by a twist.

– A revolute (R) joint (like an elbow) allows a pure rotation twist ξ = (ω, r × ω).
– A prismatic (P) joint (like a slider) allows a pure translation twist ξ = (0, v).

4. The total motion of the robot’s end-effector is found by "adding up" the twists from each
joint. This is the Product of Exponentials (POE) formula (Section 8.1).

5. The velocity of the end-effector is related to the joint velocities (θ̇) by the Jacobian
(Section 8.2).

6. The forces at the end-effector are related to the torques at the joint motors by the
Jacobian (using wrench duality).

You now have the physical motivation for why SO(3), SE(3), so(3), se(3), ξ, and F are the
fundamental objects used in the main notes.

Exercises (with short solutions).

M.1 Pose Calculation: A body frame {b} is at ps = (1, 2, 3) and rotated 90◦

*clockwise* about the space x-axis. What is its pose matrix H ∈ SE(3)? Solution:
Clockwise about x is Rx(−π/2). R =

[ 1 0 0
0 cos(−π/2) − sin(−π/2)
0 sin(−π/2) cos(−π/2)

]
=
[ 1 0 0

0 0 1
0 −1 0

]
. H =[ 1 0 0 1

0 0 1 2
0 −1 0 3
0 0 0 1

]
.

M.2 Finding a Twist: A body is spinning at 2 rad/s about an axis passing through
the point r = (0, 5, 0) in the space frame, with direction ωdir = (0, 0, 1). What
is the spatial twist ξs? Solution: ωs = 2 · (0, 0, 1) = (0, 0, 2). The origin of the
frame is at p = 0. The velocity of a point r on the axis is 0. But the velocity
vs is the velocity of the origin (p = 0) of a frame that is *on* the rotation
axis. The formula for the linear velocity of a frame at p whose motion is defined
by rotation ωs about a point r is vs = −ωs × (r − p) = −ωs × r. Wait, the
formula in the main notes (Section 7) is simpler: for a rotation about an axis ω
through r, the linear component is v = r × ω = (0, 5, 0) × (0, 0, 2) = (10, 0, 0). So
ξs = (ωs, vs) = (0, 0, 2, 10, 0, 0)⊤. *Self-correction:* The formula v = r × ω (or
−ω×r) is correct. Let’s use the cross product ω̂sr: ω̂sr =

[ 0 −2 0
2 0 0
0 0 0

][ 0
5
0

]
=
[−10

0
0

]
. So

vs = −ωs × r = (0, 0, 2) × (0, 5, 0) = (−10, 0, 0). ξs = (ωs, vs) = (0, 0, 2, −10, 0, 0)⊤.
*Note:* The main notes use r × ω (Example 7), which gives (10, 0, 0). Let’s stick
to that convention. ξs = (ω, r × ω) = (0, 0, 2, 10, 0, 0)⊤.

M.3 Power Calculation: A wrench Fs = (m, f) = (0, 10, 0, 0, 0, 5) is applied to a
body moving with twist ξs = (ω, v) = (2, 0, 0, 1, 1, 0). What is the power? Solution:
P = F ◦ ξ = m⊤ω + f⊤v P = (0 · 2 + 10 · 0 + 0 · 0) + (0 · 1 + 0 · 1 + 5 · 0) = 0 + 0 = 0.
The wrench is reciprocal to the twist; no power is generated.
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6 Summary and Refresher

6.1 Sets, functions, fields

Definition 6.1 (Set). A set is a collection of elements. We write x ∈ S to denote that x is an
element of S.

A function f : A → B maps each a ∈ A to a unique b ∈ B. The image f(A) = {f(a) | a ∈ A};
the preimage of Y ⊆ B is f−1(Y ) = {a ∈ A | f(a) ∈ Y }.
A field (e.g. R,C) is a set with addition and multiplication obeying the usual laws (associativity,
commutativity, distributivity, identities, inverses). We will work over R unless stated otherwise.

6.2 Real vector spaces

Definition 6.2 (Vector space). A real vector space V is a set equipped with addition + and
scalar multiplication λv for λ ∈ R, satisfying closure, associativity, commutativity of addition,
identities, inverses, and distributivity.

Typical examples: Rn, spaces of polynomials Pn, spaces of matrices Rm×n. A subspace U ⊆ V is
closed under addition and scalar multiplication. A set {vi} spans V if every v ∈ V is a linear
combination of {vi}. It is independent if

∑
αivi = 0 implies all αi = 0. A basis is spanning and

independent; its size is the dimension dim V .

6.3 Linear maps and matrices

A map T : V → W is linear if T (αv + βw) = αT (v) + βT (w). With chosen bases, linear maps
correspond to matrices. The kernel (null space) null(T ) = {v | T (v) = 0} and the image
im(T ) = {T (v) | v ∈ V }.

Theorem 6.3 (Rank–nullity). For finite-dimensional V ,

dim V = rank(T ) + dim null(T ). (1)

6.4 Inner products and norms

An inner product ⟨·, ·⟩ on V is symmetric, bilinear, and positive-definite. It induces a norm
∥v∥ =

√
⟨v, v⟩. In Rn with the standard inner product ⟨x, y⟩ = x⊤y, orthogonality means

⟨x, y⟩ = 0.

6.5 Matrix exponential and logarithm

For a square matrix A,

eA =
∞∑

k=0

Ak

k! , log(I + A) =
∞∑

k=1

(−1)k+1

k
Ak (∥A∥ < 1). (2)

If A and B commute (AB = BA), then eA+B = eAeB. For noncommuting matrices, the
Baker–Campbell–Hausdorff (BCH) series quantifies the deviation.
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6.6 Multivariable calculus

Gradients, Jacobians, and differentials generalize directional rates of change. If f : Rn → Rm, its
Jacobian Jf (x) ∈ Rm×n satisfies f(x + ∆x) ≈ f(x) + Jf (x)∆x.

Worked Example (Jacobian linearization). For f(x) =
[
sin x1
x1x2

]
, the Jacobian is

Jf (x) =
[
cos x1 0

x2 x1

]
.

Exercises (with short solutions).

P.1 Show that the set of polynomials of degree ≤ n is a vector space and find a basis.
Solution: Closure holds; a basis is {1, t, t2, . . . , tn}.

P.2 Prove rank–nullity for a 3 × 5 matrix by dimension counting. Solution: Columns
span a subspace of R3 of dimension rank; nullity equals 5 − rank.
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7 Group Theory Essentials

Definition 7.1 (Group). A group (G, ·) is a set with a binary operation · satisfying closure,
associativity, identity e, and inverses g−1 for all g ∈ G.

7.1 Motivation from symmetry

Rotations of a rigid body compose associatively, have an identity (do nothing), and each rotation
has an inverse (rotate back). Hence the set of all rotations with composition forms a group.

7.2 Subgroups, homomorphisms

A subset H ⊆ G is a subgroup if it is a group under the same operation. A homomorphism
ϕ : G → H preserves the operation: ϕ(g1g2) = ϕ(g1)ϕ(g2). The kernel ker ϕ = {g | ϕ(g) = e} is a
normal subgroup. Cosets partition G and lead to quotient groups G/N .

Examples. (R, +), (R \ {0}, ×), the set of n × n invertible matrices GL(n) under multipli-
cation, SO(3) under multiplication.

Exercises (with short solutions).

G.1 Show that SO(3) is a group. Solution: Closure by product of orthogonal matrices
with determinant 1; associativity inherited from matrix multiplication; identity I;
inverse R⊤.

G.2 Describe a nontrivial homomorphism from (R, +) to (R+, ×). Solution: ϕ(t) = et.
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8 Vector Spaces and Linear Maps

8.1 Basics

See prerequisites. In robotics we constantly move between coordinate representations; linear
maps and bases make this precise.

8.2 Null spaces, images, rank–nullity

Given A ∈ Rm×n, the solution set to Ax = 0 is null(A). The possible outputs form im(A).
rank–nullity links these: rank(A) + dim null(A) = n.

8.3 Matrix representation and change of basis

Let {ei} and {ẽi} be bases. The change-of-basis matrix P satisfies [v]ẽ = P −1[v]e. If T is linear,
its matrix in the new basis is Ã = P −1AP .

Worked Example (Orthogonal change of basis). If Q ∈ O(n), then Ã = Q⊤AQ.
Orthogonal changes preserve inner products and lengths.

Exercises (with short solutions).

V.1 For A =
[
1 2
0 1

]
, find null(A − I). Solution: (A − I) =

[
0 2
0 0

]
; null space spanned

by (1, 0)⊤.

V.2 Show that if Q is orthogonal, then ∥Qx∥ = ∥x∥. Solution: ∥Qx∥2 = x⊤Q⊤Qx =
x⊤x.
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9 Euclidean Vector Spaces

9.1 Inner products, norms, and orthogonality

An inner product space (V, ⟨·, ·⟩) supports projections and orthogonal decompositions.

9.2 Projection theorem and Gram–Schmidt

Theorem 9.1 (Projection). Given a subspace U ⊂ V and v ∈ V , there is a unique decomposition
v = u + w with u ∈ U and w ∈ U⊥. u is the projection of v onto U .

Gram–Schmidt orthonormalizes any independent set {vi} to an orthonormal basis {qi}.

9.3 Cross product and determinant

In R3, the cross product a × b is orthogonal to both a and b with magnitude ∥a∥∥b∥ sin θ. It
satisfies a · (b × c) = det[a b c].

9.4 Coordinate transformations and orthogonal matrices

Orthogonal matrices Q preserve inner products: ⟨Qx, Qy⟩ = ⟨x, y⟩. They model rotations and
reflections.

Worked Example (Orthogonal projection). Project v = (1, 2, 2) onto the line spanned
by u = (1, 1, 0). The unit direction is û = u/∥u∥ = ( 1√

2 , 1√
2 , 0), so proju(v) = ⟨v, û⟩û =

3√
2 û = (3

2 , 3
2 , 0).

Exercises (with short solutions).

E.1 Prove a · (b × c) = det[a b c]. Solution: Expand by components; both sides are the
scalar triple product.

E.2 Show Q ∈ O(n) ⇒ (Qx) · (Qy) = x · y. Solution: As above via Q⊤Q = I.
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10 Affine Spaces and Frames

An affine space is like a vector space without a distinguished origin. Points p, q differ by a vector
v = −→pq. Reference frames in robotics are affine: a frame is an origin o plus orthonormal axes.

10.1 Homogeneous coordinates

Augmenting x ∈ R3 with a 1 yields x̄ =
[
x
1

]
∈ R4. Rigid motions become linear maps in R4:

H =
[
R p
0 1

]
, x̄′ = Hx̄. (3)

Worked Example (Composing motions). Two motions H1 = [R1, p1], H2 = [R2, p2]
compose to H2H1 = [R2R1, R2p1 + p2].

Exercises (with short solutions).

A.1 Show that the set {[R, p] | R ∈ SO(3), p ∈ R3} is closed under multiplication.
Solution: See composition formula above.

A.2 Explain why frames are affine objects. Solution: Moving the origin changes point
coordinates by translation without altering vector differences.
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11 Lie Groups (SO(3), SE(3)) and Lie Algebras

11.1 Manifolds in brief

A manifold is a space that locally looks like Rn. Matrix Lie groups (like SO(3) and SE(3)) are
smooth manifolds closed under matrix multiplication and inversion.

11.2 SO(3) and its algebra so(3)

Definition 11.1. SO(3) = {R ∈ R3×3 | R⊤R = I, det R = 1} is a 3D manifold and a group.
Its Lie algebra is

so(3) = {ω̂ ∈ R3×3 | ω̂⊤ = −ω̂} =


 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

 : ω ∈ R3

 . (4)

The hat map ω 7→ ω̂ embeds vectors into skew-symmetric matrices; the vee map is its inverse:
ω̂ ∨ = ω.

11.3 Exponential map and Rodrigues’ formula

The matrix exponential maps so(3) to SO(3): R = exp(ω̂θ). For ∥ω∥ = 1,

R = I + sin θ ω̂ + (1 − cos θ) ω̂2. (5)

11.4 SE(3) and its algebra se(3)

Definition 11.2. SE(3) =
{[

R p
0 1

]
: R ∈ SO(3), p ∈ R3

}
is a 6D manifold. Its Lie algebra is

se(3) =
{

ξ̂ =
[
ω̂ v
0 0

]
: ω, v ∈ R3

}
. (6)

The exponential map exp : se(3) → SE(3) is

exp
([

ω̂ v
0 0

]
t

)
=
[
exp(ω̂t) J(ωt) v

0 1

]
, (7)

where the left Jacobian of SO(3) is

J(ϕ) = I + 1 − cos ϕ

ϕ2 ω̂ + ϕ − sin ϕ

ϕ3 ω̂2, ϕ = ∥ω∥t. (8)

If ω = 0 (pure translation), then exp
(
ξ̂t
)

= [I, vt].

11.5 Adjoint maps and BCH intuition

The group adjoint AdH : se(3) → se(3) transforms twists between frames:

Ad[
R p
0 1

] =
[

R 0
p̂R R

]
. (9)

The BCH formula explains log(exp A exp B) via A + B + 1
2 [A, B] + · · · , revealing noncommuta-

tivity.
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Worked Example (Small-angle). For small θ, sin θ ≈ θ, 1−cos θ ≈ θ2

2 , hence R ≈ I+ ω̂θ.

Exercises (with short solutions).

L.1 Prove ω̂3 = −∥ω∥2ω̂. Solution: Use ω̂2 = ωω⊤ − ∥ω∥2I.

L.2 Derive Ad[R,p] by conjugation: ξ̂′ = H ξ̂H−1. Solution: Compute block products;
read off the 6 × 6 form.
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12 Screw Theory: Twists and Wrenches

12.1 Twists

A twist is ξ = (ω, v) ∈ R6 or its matrix ξ̂ =
[
ω̂ v
0 0

]
. It encodes instantaneous rigid motion:

Ḣ = ξ̂ H ⇒ H(t) = exp
(
ξ̂t
)
H(0). (10)

The pitch is h = ω⊤v

ω⊤ω
: h = 0 for revolute, h = ∞ (formally) for prismatic (ω = 0), finite h for

helical.

12.2 Wrenches and reciprocity

A wrench F = (m, f) ∈ R6 collects moment and force. The reciprocal product (virtual power) is

F ◦ ξ = m⊤ω + f⊤v. (11)

If F ◦ ξ = 0, the wrench does no instantaneous work along the twist. Twist and wrench spaces
are dual; in an n-DoF mechanism, dim T = n and feasible wrench space has dimension 6 − n.

12.3 Plücker coordinates intuition

Lines in space can be encoded by a direction and moment about the origin; twists and wrenches
mirror this line geometry.

Worked Example (Joint twists).

– Revolute about axis ω through point r: ξ = (ω, r × ω).

– Prismatic along unit direction v: ξ = (0, v).

– Helical of pitch h about (ω, r): ξ = (ω, r × ω + hω).

Exercises (with short solutions).

S.1 Show that shifting the reference point by p changes (ω, v) to (ω, v + p̂ ω). Solution:
Apply Ad[I,p].

S.2 For a wrench F = (m, f) and twist (ω, v), verify frame invariance of F ◦ξ. Solution:
Use dual adjoint to show invariance.
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13 Kinematics: POE, Jacobians, and Adjoint

13.1 Product of exponentials (POE)

Let a serial robot have joint coordinates θ = (θ1, . . . , θn) and space-frame twists ξi. The
end-effector pose is

H(θ) = exp
(
ξ̂1θ1

)
exp

(
ξ̂2θ2

)
· · · exp

(
ξ̂nθn

)
H0, (12)

where H0 is the home configuration.

13.2 Spatial and body Jacobians

Define the spatial Jacobian Js(θ) = [ξ1, Ad
eξ̂1θ1 ξ2, . . . ] so that the spatial twist of the end-effector

is
ξs = Js(θ) θ̇. (13)

The body Jacobian Jb expresses twists in the end-effector frame; Jb(θ) = AdH(θ)−1Js(θ).

13.3 Adjoint transformation

For any H ∈ SE(3), ξ′ = AdH ξ changes frames; similarly wrenches transform by the dual adjoint
Ad−⊤

H .

13.4 Singularities and manipulability

When J loses rank, certain directions of motion are unattainable; the manipulator is at a
singularity. Measures like

√
det(JJ⊤) (Yoshikawa manipulability) quantify dexterity.

Worked Example (Two-link planar arm). Let joint 1 be revolute about z at the base;
joint 2 about z at the elbow. With space twists ξ1 = (ez, 0) and ξ2 = (ez, e1ℓ1 × ez), derive
H(θ) and Js(θ). The result matches the classical planar kinematics and Jacobian.

Exercises (with short solutions).

K.1 Derive Jb from Js via AdH(θ)−1 . Solution: Differentiate the body-frame POE form.

K.2 Identify singularities of a planar 2R arm. Solution: When the two links are
collinear; J drops rank.
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14 Parallel Mechanisms

A parallel robot has multiple kinematic chains (legs) in parallel from base to end-effector. The
end-effector twist space is the intersection of leg twist spaces:

TEE =
m⋂

j=1
Tj . (14)

Constraints reduce DoF; feasible wrenches lie in the orthogonal complement.

14.1 Example: Stewart platform

Six legs with prismatic actuators control a SE(3) pose. Constraint Jacobians relate actuator
rates to platform twist; analysis proceeds via twist/wrench duality.

Exercises (with short solutions).

P.1 Explain why adding a leg cannot increase platform DoF. Solution: DoF is an
intersection dimension; adding constraints can only reduce or maintain it.

P.2 For a simplified 3-RPS platform, write constraint equations and infer platform
DoF. Solution: Three independent constraints yield 3 DoF.
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15 Degrees of Freedom and Grübler–Kutzbach

For spatial mechanisms with N links (including base), J joints, and joint freedom fi each, a
heuristic DoF count is

DoF = m(N − 1 − J) +
J∑

i=1
fi, m = 6 (spatial), m = 3 (planar). (15)

This is necessary but not sufficient; special geometries can alter the count (overconstraints or
redundancies).

Worked Example (Planar 4-bar). m = 3, N = 4, J = 4, all fi = 1: DoF =
3(4 − 1 − 4) + 4 = 1 as expected.

Exercises (with short solutions).

D.1 Compute the DoF of a spatial 6R serial arm. Solution: m = 6, N = 7, J = 6,
fi = 1: DoF = 6(7 − 1 − 6) + 6 = 6.

D.2 Give an example where Grübler’s formula fails. Solution: Overconstrained mecha-
nisms (e.g., Bennett linkage).
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Appendices

A. Determinants and eigen decompositions

The determinant det A equals the volume-scaling factor of A (with sign). Orthogonal matrices
have | det | = 1. Symmetric matrices admit eigen decompositions A = QΛQ⊤.

B. Skew-symmetric identities and Rodrigues derivation

Using ω̂2 = ωω⊤ − ∥ω∥2I and the series for eω̂θ yields Rodrigues’ formula as given.

C. Differential equations on Lie groups

Left-invariant ODEs Ḣ = ξ̂H integrate to H(t) = exp
(
ξ̂t
)
H(0). For time-varying ξ(t), the

solution is a time-ordered exponential.

Extended Worked Examples

E1. Frame changes and adjoint

Given H = [R, p] and a body twist ξb, compute its space representation ξs = AdHξb. Numerically
illustrate with R a 90◦ rotation about z and p = (1, 0, 0).

E2. POE for a 3R spherical wrist

Write the three joint twists about intersecting axes at the wrist center; compute Jb and discuss
singularities at gimbal configurations.

Chapter-end Exercise Collections (with short solutions)

Below we gather additional mixed exercises to reinforce connections.

X.1 Show that SO(3) is a 3D manifold by
parameter counting and regular value
theorem (sketch). Solution: Orthog-
onality imposes 6 independent con-
straints on 9 parameters; determinant
= 1 fixes sign: dimension 3.

X.2 Derive the left Jacobian J(ϕ) series
to O(ϕ3). Solution: Expand exp(ω̂ϕ)
and integrate the conjugation formula.

X.3 For a helical joint with pitch h, find

the screw axis and interpret h geo-
metrically. Solution: Axis direction
ω/∥ω∥; h is translation per radian.

X.4 Prove invariance of F ◦ ξ under frame
change. Solution: Use F ′ = Ad−⊤

H F ,
ξ′ = AdHξ.

X.5 Compute the manipulability measure
for a 2R planar arm at a stretched
configuration. Solution: Determinant
vanishes; manipulability = 0.

End of notes.
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